Heterotrinuclear Basic Acetates containing Chromium(ili), Iron(iii), and a Divalent Metal : **Spectroscopic Consequences of Metal-Metal Interactions**

Antony B. Blake and Ahmad Yavari

Department of Chemistry, The University of Hull, Hull HU6 7RX, U.K.

Complexes $[Cr^{\text{III}}_2M^{\text{II}}O(MeCO_2)_6py_3]$ (M = Mg, Fe, Co, or Ni) and $[Cr^{\text{III}}Fe^{\text{III}}M^{\text{II}}O(MeCO_2)_6py_3]$ $(M = Mn, Fe, Co, or Ni, py = pyridine)$ are reported; their absorption spectra, together with those of the analogous Fe2111MII complexes, provide new information about electronic properties of the M *3O* system.

The series of oxo-centred, trinuclear cationic complexes in recent years been extended by the preparation and struc- $[M^{III}₃O(MeCO₂)₆L₃]$ ⁺ (1) (M = V, Cr, Mn, Fe, or Rh)¹ has tural characterisation of a number of mixed-valence and

mixed-metal neutral complexes $[M¹¹¹₂M¹¹O(MeCO₂)₆L₃]$ (2a) $(M^{III} = M^{II} = Mn)²$ and (2b) (M^{III} = Fe, M^{II} = Mg, Mn, Fe, Co, Ni, Cu, or Zn). $3,4$ We now report some new members of the class (2), of formulae $\left[\text{Cr}^{\text{III}}\right]_2\text{M}^{\text{II}}\text{O}(\text{MeCO}_2)_6\text{L}_3$ (2c) $(M^H = Mg, Fe, Co, or Ni with L = py; M^H = Mn or Zn$ with $L_3 = py + 2H_2O$ and $[Cr^{III}Fe^{III}M^{II}O(MeCO_2)_6py_3]$ (2d) ($M^{II} = Mn$, Fe, Co, or Ni).[†]

$$
\begin{array}{ccc}\n[M^{\mathrm{III}}{}_{3}\mathrm{O}(\mathrm{MeCO}_{2}){}_{6}\mathrm{L}_{3}]^{+} & \quad [M^{\mathrm{III}}{}_{2}\mathrm{M}^{\mathrm{II}}\mathrm{O}(\mathrm{MeCO}_{2}){}_{6}\mathrm{L}_{3}]\\
(1) & (2)\n\end{array}
$$

The Cr₂M^{I1} complexes (except $M^{II} = Fe$) were obtained by warming the divalent metal acetate, and the $Cr₂Fe^{II}$ and CrFeM^{II} complexes by warming the Fe₂M^{II} complex (2b), with chromium(II) acetate in pyridine (under nitrogen in the FeI1 cases), and were recrystallised from pyridine. Precession photographs establish that $(2c; M^H) = Fe$ or Co) and $(2d;$ $M^{II} = Mn$, Fe, or Co), like their Fe₂M^{II} analogues,⁴ have the rhombohedra1 crystal structure of (2a) in which the three metal atoms are crystallographically equivalent,² whereas the complexes with $M^H = Mg$ or Ni are monoclinic and isomorphous with the $Fe₂Ni$ analogue.⁴

The compounds (2) now constitute by far the largest family of isostructural, heteronuclear complexes known, and offer a rich field for investigation of the magnetic and spectroscopic consequences of electronic communication between different transition-metal ions. Examination of their diffuse reflectance spectra (Figures 1 and 2) leads to several interesting observations.

(a) *d-d spectra:* (i) Replacement of one trivalent ion in **(1)** $(M = Cr)$ or Fe) by a divalent ion significantly reduces the

Figure 1. Room-temperature diffuse reflectance spectra of $[F\acute{e}^{III}{}_{2}M^{II}O(MeCO_{2}){}_{6}py_{3}]$ and the CrFeFe^{II} analogue.

average ligand field at the remaining M^{3+} ions. Thus, the bands assigned to ${}^4A_{2g} \rightarrow {}^4T_{2g}$ and ${}^4T_{1g}(F)$ of Cr³⁺ (octahedral) which occur at 17 600 and 23 000 cm⁻¹ in $(1; M =$ Cr, L = py) and at 17 300 and 22 800 cm⁻¹ in $(1; M = Cr,$ $L = H₂O$) appear at only 16 700 and 21 200 cm⁻¹ in **(2c;** $M¹¹ = Mg$; while the band assigned to ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$ of Fe³⁺ which lies at 9150 cm⁻¹ in $(1; M = Fe, L = py)$ is found at 9400 cm⁻¹ in (2b; $M^H = Zn$, L = py). (This transition increases in energy as *Dq* is reduced.) The reduction in the average ligand field is accompanied by an increase in the strength of $M^{III}-M^{III}$ super-exchange,⁴ suggesting that both effects may be consequences of an increase in $M^{III}-O-M^{III}$ π -bonding. (ii) The spin-forbidden ${}^3A_{2g} \rightarrow {}^1E_g(D)$ transition of Ni^{2+} in the Fe₂Ni complex, which we identify with the prominent band at 12 900 cm⁻¹ (Figure 1), is of remarkably high intensity, comparable with that of the first spin-allowed band, \ddagger presumably as a result of the Fe-Ni exchange inter-
action.^{4,5}

(b) *Metal-to-metal electron transfer:* A band at **13** 800 cm⁻¹ in the spectrum of (2b; $M^H = Fe$, L = H₂O) has been attributed to $Fe^{2+} \rightarrow Fe^{3+}$ intervalence transfer.⁶ With the availability of Fe₂Fe, Fe₂Zn, CrFeFe, Cr₂Fe, and Cr₂Mg spectra for comparison, a more confident appraisal should be possible. Surprisingly, inspection of Figures 1 and 2 reveals that the Fe¹¹¹₂Fe¹¹ complex (L = py) has an additional strong absorption at $6000-7000$ cm⁻¹ (as does CrFeFe^{II}), as well as at *ca*. 13 000 and 17 000 cm⁻¹, the latter being responsible for its dark brown colour, unlike the green of Fe₂Zn. We suggest that the 6000 cm⁻¹ band is the primary intervalence transition, the other absorptions perhaps arising from electron transfer coupled with electronic excitation of

Figure 2. Room-temperature diffuse reflectance spectra of $[\tilde{C}I^{III}M^{II}O(MeCO_2)_6py_3]$ and the CrFeFe^{II} analogue.

 \ddagger Assuming that the Ni²⁺ bands occur at the same energies in the Cr_2 Ni and Fe₂Ni complexes, we locate the transitions ${}^3A_{2g} \rightarrow$ ${}^{3}T_{gg}$ at 9300 (ϵ_{max} 4 cm² mmol⁻¹ in CHCl₃) and ${}^{3}T_{1g}(\tilde{P})$ at 26 600 cm⁻¹. These assignments imply *B ca*. 940 cm⁻¹ and ${}^{3}T_{1g}$ (F) at *ca*. 15 500 cm⁻¹. If the 12 900 cm⁻¹ band ($\epsilon_{\text{$ mmol⁻¹) were assigned to ${}^{3}T_{1g}$ (F), *B* would have the unreasonably low value of 360 cm^{-1} .

 \uparrow py = pyridine. Crystals of **(2) (L** = py or H_2O) always contain additional molecules of non-co-ordinated py $(0.5-1)$ or H_2O *(2-3),* respectively, which we omit from formulae. Satisfactory analyses for C, H, N, and Fe were obtained. In the case of **(2d),** their colours (see below) indicate that they are not merely mixed crystals of the corresponding **(2b)** and **(2cj,** although these molecules may also be present in the crystals.

the receptor. (Fe²⁺ d-d bands appear in the $Cr₂Fe¹¹$ spectrum at *ca*. 8500 and 11 000 cm⁻¹.)

(c) Finally, we draw attention to the fact that, in contrast with the green colour of $Fe₂Zn$ and the $Cr₂M¹¹$ complexes, the CrFeM'I complexes **(26)** are purple-brown, with strong absorption at *ca.* 19 000 cm⁻¹. A similar colour due to the simultaneous presence of Cr^{3+} and Fe^{3+} is also very noticeable in the case of $(1; L = py)$ (Cr₃, grey-green; Fe₃, olive-green; $Cr₂Fe$, purple-red), where it is associated with quite intense $(\epsilon_{\text{max}}$ *ca.* 500 cm² mmol⁻¹) absorption bands at 18 600, 21700 , and 25500 cm⁻¹, which do not coincide with any bands in the spectra of the Cr_3 and Fe_3 compounds, and which shift to higher energy when py is replaced by H_2O .⁷ One possibility is that these are simultaneous (Cr^{3+}, Fe^{3+}) double excitations: pair transitions of the $Cr₃$ complex are clearly visible at room temperature, and such bands are known to be greatly intensified when the ions are dissimilar.⁸ It would be necessary here to assume coupling of doublet or quartet terms of Cr^{3+} with the lowest spin doublet of Fe^{3+} , which presumably lies below 5000 cm^{-1} .

We are grateful to Mr. **G.** Collier and Mr. **1. A.** Pickering for assistance with spectroscopy, and to the S.E.R.C. for financial support.

Received, 12th Airgust 1982; Conz. 966

References

- 1 J. Catterick and P. Thornton, *Adv. Inorg. Chern. Radochem.,* 1977, **20,** 291; T. Glowiak, M. Kubiak, and **B.** Jezowska-Trzebiatowska, *Bull. Acad. Pol. Sci., Ser. Sci. Chim.,* 1977, *25,* 359; T. Glowiak, M. Kubiak, and T. Szymanska-Buzar, *Acta Crystallogr., Sect. B,* 1977, **33,** 1732.
- 2 **A.** R. Baikie, **M.** B. Hursthouse, D. B. New, and P. Thornton, *J. Chem. Soc., Chem. Commun.,* 1978, 62.
- 3 K. M. Yakubov, V. V. Zelentsov, T. **A.** Zhemchuznikova, **S. K.** Abdullaev, and V. R. Fisher, *DokI. Akad. Nauk SSSR,* 1980, *250,* 402.
- 4 **A.** B. Blake, **A.** Yavari, and H. Kubicki, *J. Chem. Soc., Chem. Commun.,* 1981, 796.
- *5* J. Ferguson and H. J. Guggenheim, *J. Cliem. Phys.,* 1966, **45,** 11 34.
- 6 **C. T.** Dziobkowski, J. T. Wrobleski, and D. **R.** Brown, *Iiitorg. Chern.,* 1981, **20,** 679.
- 7 **A. B.** Blake and **J.** R. Pitchers, unpublished results. The anomalous colour was first noted (for $L = H₂O$) by R. Weinland and E. Gussmann, *Chem. Ber.*, 1909, 42, 3881.
- 8 L. Dubicki and P. Day, *Inorg. Chem.*, 1972, 11, 1868; J. Ferguson, H. J. Guggenheim, and *Y.* Tanabe, *Phys. Rev.,* 1967, **161,** 207.